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1. Research Accomplishments

1.1 Laser instabilities

We have significantly expanded our study of laser instabilities.

With Paul Mandel, we have examined the slow passage through the Ar laser
steady bifurcation point. We took into account the fact that all experi-
ments have considered initial conditions close to the bifurcation point. We
showed that the transition is described by a nonlinear evolution equation
(Opt. Comm. 85, 43-46, 1991). With M. Georgiou, we have analyzed limit-
cycle laser oscillations by the method of matched asymptotic expansions. We
showed that the slow and nearly zero intensity regime can be described as a
slow passage problem. Consequently, the slow regime of the laser oscillations
is highly sensitive to small amplitude noise. We then studied analytically
and numerically the effect of noise (Phys. Rev. A45, 6636-6642, 1992).

With 1. Schwartz, we investigated the bifurcation diagram of the periodically
modulated laser in the limit of large amplitude oscillations. We applied the
method of matched asymptotic expansions and derived a Poincaré map for
the successive oscillations. We then showed that period doubling bifurcation
is possible and compared our predictions with the results of a new numerical
study of the laser problem (“Subharmonic hysteresis and period doubling
bifurcations for a periodically driven laser”, submitted to SIAM J. on Appl.
Mathematics, 1992).

With R.-D. Li, we investigated the bifurcation to periodic standing and trav-
eling wave solutions in arrays of coupled semiconductor lasers. We concen-
trated on the linear stability of a basic solution and showed that the first
instability corresponds to a preferential spatio-temporal mode of oscillations
(Phys. Rev. A48, 4252-4260, 1992). We also investigated the continuous
limit and found that the bifurcation to the new states are different if the
number of coupled lasers is even or odd (Bifurcation to standing and travel-
ing waves in large arrays of coupled lasers, submitted to Phys. Rev. A, 1993).
Furthermore, we analyzed the linear stability of a basic solution for series and
parallel coupling. We deinonstrated the stabilizing effect of parallel coupling
(Opt. Comm. 99, 196-200, 1993).
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1.2 Singular bifurcation to relaxation oscillations

With S. Baer, we continued our study of the singular Hopf bifurcation to
relaxation oscillations (SIAM J. Appl. Math. 46, 721-739, 1986). In our
previous analysis, we investigated a system of two first order nonlinear equa-
tions and showed how the bifurcation problem can be reduced to a weakly
perturbed conservative system of two first order equations. We developed
a method, based on analyzing nearly conservative quantities, to find the
bifurcation diagram of the periodic solutions emerging from singular Hopf
bifurcation points. Specifically, we analyze the bifurcation diagram of the
Fitzhugh-Nagumo equations when the Hopf bifurcation is subcritical but
nearly vertical. The extension from the earlier bifurcation analysis is achieved
by performing a perturbation analysis from the first integral of the leading
order nonlinear oscillator. It is observed that local to the change of criticality
at a parameter ¢, the first integral exists up to an additional order in the
perturbed equation. This condition allowed the resolution of features deter-
mined by higher order terms (SIAM J. on Appl. Mathematics 52, 1651-1664,
1992).

With K. Deller and A. Bayliss, we investigated the Brusselator reaciion-
diffusion equations with periodic boundary conditions. We considered the
range of values of the parameters used by Kuramoto in his study of chaotic
concentration waves. We determined numerically the bifurcation diagram
of the long-time traveling and standing wave solutions using a highly accu-
rate Fourier pseudo-spectral method. For moderate values of the bifurcation
parameter, we have found a sequence of instabilities leading either to pe-
riodic and quasiperiodic standing waves or, to chaotic regimes. However,
for large values of the control parameter, we have found only uniform time-
periodic solutions or time-periodic traveling wave solutions. Our numerical
study has motivated a new asymptotic analysis of the Brusselator equations
for large values of the control parameter and small diffusion coefficients. We
found that relaxation oscillations have a stabilizing effect (Eur. J. on Applied
Mathematics 2, 341-358, 1991).




Final Technical Report, AFOSR #90-0139 Page 4

1.3 Slow passage through bifurcation points

We have explored analytically and numerically several slow passage through
bifurcation or limit points. With E. Reiss, L. Holden and M. Georgiou, we
reviewed all asymptotic results which have been obtained both for steady and
Hopf bifurcations (In “Dynamic Bifurcations”, Lect. Notes in Mathematics
1493, 14-28, 1991). Of particular interest is the fact that nonlinear problems,
which are not formulated as bifurcation problems, may require the study
of a slow passage through a bifurcation point. This is the case of the so-
called bursting oscillations. With L. Holden, we investigated a model of two
allosteric enzymes coupled in series. From a numerical study of the kinetic
equations, we found that the bursting solution strongly depends on a slow
passage through a Hopf bifurcation. The transition is from a slowly varying
branch of limit-cycle oscillations to a slowly varying branch of steady state
solutions. We then showed that the delay of the transition can be explained
by solving a non-autonomous amplitude equation (J. Math. Biol. 31, 351-365
(1993); “Slow passage through a Hopf bifurcation: from oscillatory to steady
state solutions”. SIAM J. on Appl. Mathematics, in press, 1993).

1.4 Propagation failure in discrete reaction-diffusion equa-
tions

With G. Nicolis, we considered a discrete bistable reaction-diffusion system
modeled by N coupled Nagumo equations. We developed an asymptotic
method to describe the phenomenon of propagation failure. The Nagumo
model depends on two parameters: the coupling constant d and the bistability
parameter a. We investigated the limit ¢ — 0 and d(a) — 0 and constructed
traveling front solutions. We obtained the critical coupling constant d =
d*(a) above which propagation is possible and determined the propagation
speed ¢ = ¢(d) if d > d* (“Propagating waves in discrete bistable reaction-
diffusion systems”, Physica D, in press, 1993). With V. Booth, we applied
this analysis to the case of nonuniform coupling in the population (Physica A
188, 206-209, 1992). With J.-P. Laplante, we studied experimentally moving
fronts propagating in a system of 16 bistable coupled chemical reactors. We
determined the speed of the front and showed that it fails to propagate if
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the exchange rate is below a non zero value (Physica A 188, 89-98 (1992);
J. Phys. Chem. 96, 4931-34, 1992).

1.5 Large coherent fluid structures in boundary layers

We have considered the propagation of acoustic waves from a high-frequency
line source in a shear layer flowing over an infinite elastic plate. The fluid
was taken to be inviscid and compressible. Lagrange-Kirchhoff linear plate
theory, including structural damping, was used to describe the small ampli-
tude motions of the plate. The resulting problem was solved approximately
by first obtaining the integral representation of the solution using Fourier
transforms, and then obtaining asymptotic expansions of this expression for
high-frequency sources, as we have done previously for shear flow over a
rigid wall. An infinite sequence of caustics (localized noisy regions) are cre-
ated, downstream of the source and adjacent to the elastic surface, by the
refraction of rays from the source and their subsequent reflections from the
plate. The acoustic fields on and off the caustics, and in the near and the far
field, were obtained from the asymptotic solution. Because of the structural
damping, large attenuation of the caustic sound field is obtained for special
values of the plate and fluid parameters (Abrahams, Kriegsmann and Reiss,
J. Acoust. Soc. of Amer. 92, 1992).

1.6 Primary and secondary flutter in flexible channel flows

A mathematical model for the nonlinear stability of two-dimensional leakage
channels was formulated and analyzed. It consists of an infinite channel
with flexible elastic walls containing a flowing viscous, incompressible fluid.
Two infinite elastic plates are inserted into the channel, parallel to the walls,
to form parallel channels. The walls and the parallel plates were modeled
by the Von Karman non-linear plate theory. To simplify the analysis, the
fluid viscosity was modeled by Darcy’s law rather than the Navier-Stokes
law. Plug flow, where the fluid velocity is constant in each channel and
the deflection of each wall is constant, is a solution of the problem for all
values of the flow speed. The stability of the plug flow state was tested by
linearized stability theory. Stability is lost either by divergence or by flutter.
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The critical value of the flow speed depends on the system parameters and
the mode of oscillation, either symmetric or antisymmetric. The non-linear
problem was solved by the Poincaré-Linstedt method near the critical flow
speed for flutter. One or more branches of flutter solutions bifurcate from
this critical speed depending on the multiplicity of the critical speed. It
was shown, depending on the ranges of the system parameters, that the
bifurcation is either supercritical or subcritical and that the supercritical
(subcritical) solutions are stable (unstable). Finally, it was shown that the
secondary bifurcation of flutter states may occur depending on the values of
the system parameter. In addition, “mode jumping” between flutter states
may occur via the secondary bifurcation states, which are then quasi-periodic
solutions of the non-linear problem (Prince, Grotberg and Reiss, J. Sound
and Vibration 161, 1993).

1.7 Energy leakage and reflection in slowly varying wave-
guides

We have presented a new technique, which we call the method of slowly
varying dispersion relations, for approximately determining the modes near
cut-off in two-layer slowly varying waveguides. The depth of the upper layer
is finite while the lower layer is semi-infinite. We ha- : applied the method
to the penetration problem, where the density and sound speed ratios are
O(1), which was analyzed previously by different methods, and for which it
was shown that all of the energy propagating in the upper layer was lost into
the underlying layer. We show that using slowly varying dispersion relations
more quickly leads to these results. We have also applied the method to
the case where the lower layer is hard and fast compared to the upper layer.
In this case energy is both lost into the lower layer and reflected back into
the waveguide. A new canonical integral derived with the method gives
quantitative results for the pattern of the radiation transmitted into the
lower layer and the amount of reflected energy (Kath, Minzoni, Kriegsmann
and Reiss, J. Acous. Soc. of Amer., 93, 1993).
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1.8 Pulse dynamics in nonlinear optical fibers and switches

The goal of this part of the project has been the development of approximate
methods appropriate for modeling the dynamics and propagation of pulses in
nonlinear optical fibers, and the use of these methods in the study of a number
of specific physical applications. The applications are typically described by
infinite dimensional Hamiltonian field equations, such as coupled nonlinear
Schrodinger (NLS) equations, and are perturbations of systems which are
completely integrable by the Inverse Scattering Transform. The methods
developed involve elements from both perturbation and variational methods;
the intent is to accurately describe the pulse dynamics using a relatively
small number of degrees of freedom.

The applications which were considered are problems involving the interac-
tion of pulses in nonlinear optical fibers, specifically the propagation of pulses
with two interacting polarizations. The potential application of devices incor-
porating such effects (e.g., soliton logic gates) to optical communication sys-
tems is currently being investigated by various researchers. In the problems
studied a hybrid perturbative-variational method was used to investigate the
dynamics and propagation of pulses in birefringent (two-polarization) non-
linear optical fibers. Good agreement was found when the low-dimensional
approximations obtained with the method were directly compared with nu-
merical solutions of the full partial differential equations (Ueda and Kath,
Phys. Rev. A. 42, 1990; Muraki and Kath, Physica D 48, 1991; Ueda and
Kath, Physica D, 55, 1992).

Additional interest in these hybrid variational methods has been generated
due to the recent report that they provide an efficient method for model-
ing the dynamics of soliton dragging logic gates (Wang, et al., “Numerical
modeling of soliton dragging logic gates”, J. Opt. Soc. Amer. B, to appear,
1993); in particular, the variational method described above proved to be
the most accurate among the several approximate methods tested. Soliton
dragging logic gates are all-optical, cascadable, ultrafast logic gates which
have been demonstrated experimentally by Islam ( Ultrafast Fiber Switching
Devices and Systems, Cambridge Studies in Modern Optics, No. 12, Cam-
bridge University Press, 1992). They have the potential to operate at bit
rates as high as 200 Gb/s, and all-optical ring networks based upon these
devices have been designed. Such high-level systems obviously require a large
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number of logic gates, and it is computationally excessive to be required to
solve a large number of coupled NLS equations in order to predict the be-
havior of such systems. It is for this reason that accurate, low-dimensional
approximations such as the variational models described above are desirable;
being able to determine system behavior from the solution of a set of coupled
ordinary differential equations is much more efficient than having to solve a
set of coupled partial differential equations.

1.9 Numerical modeling of optical pulse propagation

A mathematical model and one-dimensional numerical implementation of
Maxwell’s equations for the propagation of soliton-like puises in nonlinear
dispersive optical media was developed. The model includes linear disper-
sion, expressed in the time-domain, and a Kerr nonlinearity. Also incorpo-
rated in the model is a coordinate system moving with the group velocity of
the pulse, which allows significant reduction of the size of the computational
grid. A key feature of the work was an asymptotic analysis of the partial dif-
ferential equations (PDEs) used to reduce them to the Nonlinear Schrédinger
(NLS) equation. This allowed the direct generation of initial conditions for
the PDEs corresponding to solutions of the NLS equation (such as soliton
solutions), provided a method for direct comparison of the numerical re-
sults and solutions of the NLS equation, and allowed the evaluation of third
harmonics induced by the nonlinearity in the propagating pulses. Several
specific examples were examined to show the good agreement between the
theory and the numerics.

These direct comparisons also showed, however, that the NLS equation pro-
vides an excellent approximation of one-dimensional nonlinear optical pulse
propagation even in situations where one might not expect it to be. The
NLS equation is an asymptotic approximation which is valid in the limit of
large pulse widths (in comparison with a typical wavelength); the numerical
results show that (at least for the case of a single resonance linear disper-
sion and instantaneous nonlinearity) the NLS equation provides a very good
approximation even when a pulse contains as few as 10 or so optical cy-
cles. This suggests that in one dimension extended NLS equations (Agrawal,
Nonlinear Fiber Optics, Academic Press, 1992), as long as they appropri-
ately model the underlying physics, should give very good results even at
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quite short pulse widths. In addition, although this conclusion is based only
on one-dimensional calculations, we also expect it to be true in two and three
dimensions for propagation in waveguiding structures, since such structures
essentially reduce the problem to propagation in one dimension.

1.10 Phase-sensitive optical amplification

In the latter part of the award period work began on the modeling of novel op-
tical amplifiers. The use of lumped (i.e., periodically-spaced) erbium-doped
fiber amplifiers has been demonstrated as a method for cancelling loss in long-
distance optical communication systems. These erbium-doped fiber segments
amplify signals via stimulated emission; they are pumped with a diode laser
to maintain a population inversion, in a manner similar to a laser. The popu-
lation inversion generates spontaneous emission noise, however, which causes
an effect known as Gordon-Haus jitter — the random walk of solitons caused
by frequency shifts induced by the noise — and this jitter imposes an overall
limit on the maximum allowable bit rate.

As a possible alternative to erbium-doped amplifiers, the use of lumped
phase-sensitive amplifiers (e.g., phase-matched, degenerate parametric ampli-
fiers) has been suggested. Phase-sensitive amplifiers should lead to a higher
bit-rate limit because they produce no spontaneous emission noise. We have
recently completed the first theoretical study of pulse evolution in a nonlinear
optical fiber where linear loss is balanced by a chain of periodically-spaced,
phase-sensitive amplifiers (Kutz, Kath, Li and Kumar, Integrated Photonics
Research Technical Digest, Optical Society of America, 10 1993). The results
show that pulse propagation is stabilized by the use of these amplifiers. We
have also been able to show that some of these stabilizing effects are present
even for linear pulses.
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Hopf bifurcation, Society for Mathematical Biology Meeting, Santa Fe,
New Mexico, August 1991.

Slow passage through bifurcation points. Department of Mathematics,
Southern Methodist University, Dallas, Texas, September 1991.

XXth Solvay Conference on Physics entitled “Quantum Optics”, Brus-
sels, Belgium, November 1991.

Mechanisms for propagation failure in discrete reaction-diffusion systems.
NATO Advanced Research Workshop entitled “Nonequilibrium Chemi-
cal Dynamics: from Experiment to Microscopic Simulations”. Brussels,
Belgium, December 1991.

Propagation failure in coupled excitable cells: asymptotic theory and
experiments, Arizona State University, Tempe, Arizona, April 1992.

Quasi-vertical Hopf bifurcation for the multimode class B laser. Non-
linear Dynamics in Optical Systems Topical Meeting. Alpbach, Austria,
June 1992.

From harmonic to pulsating periodic solutions in intracavity second har-
monic generation. Nonlinear Dynamics in Optical Systems Topical Meet-
ing. Alpbach, Austria, June 1992.

Bifurcation to standing and traveling waves in large lasers arrays. Non-
linear Dynamics in Optical Systems Topical Meeting. Alpbach, Austria,
June 1992.
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11.

12.

13.

Class B laser oscillations. Society for Industrial and Applied Mathemat-
ics conference on Applications of Dynamical Systems. Snowbird, Utah,
October 1992.

Bursting oscillations and slow passage through bifurcation points. Soci-
ety for Industrial and Applied Mathematics conference on Applications
of Dynamical Systems. Snowbird, Utah, October 1992.

Coupled Lasers, Stability, Bifurcations and Large Arrays. Phillips Lab.,
Albuquerque, NM, May 1993.

6.2 W. L. Kath

1.

“Dynamics of pulses in birefringent optical fibers”, Society for Industrial
and Applied Mathematics Conference on Dynamical Systems, Orlando,
FL, May 1990.

“Energy leakage and reflection in underwater upslope acoustic wave prop-
agation”, Society for Industrial and Applied Mathematics Annual Meet-
ing, Chicago, IL, July 1990 (also, chair of session).

“Hamiltonian dynamics optical fiber solitons”, Minisymposium on Dy-
ramics of Nonlinear Waves, Society for Industrial and Applied Mathe-
matics Annual Meeting, Chicago, IL, July 1990 (also, organizer of min-
isymposium).

Invited speaker, “Dynamics of pulses in birefringent nonlinear optical
fibers”, Workshop on Nearly Integrable Wave Phenomena in Nonlinear
Optics, Department of Mathematics, Ohio State, December 1990.

Invited speaker, “Bending losses in optical fibers”, Asymptotics Beyond
All Orders, NATO Advanced Research Workshop, University of Califor-
nia, San Diego, January 1991.

Invited presenter, “Polarization decorrelation of pulses in randomly bire-
fringent nonlinear optical fibers”, Workshop on Computational Optics:
its links with Computational Fluid Dynamics, Department of Mathemat-
ics, University of Arizona, March 1992.
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7. Organizer, Minisymposium on Asymptotic & Perturbation Methods in
Nonlinear Wave Propogation, Society for Industrial and Applied Mathe-
matics 40th Anniversary Meeting, Los Angeles, July 1992.

8. Invited speaker, “Pulse Dynamics in Nonlinear Optical Fibers”, Min-
isyraposium on Guided Wave Propogation, Society for Industrial and
Arplied Mathematics 40th Anniversary Meeting, Los Angeles, July 1992.

9. “Dynamics of Pulses in Nonlinear Optical Fibres”, Department of Math-
ematics, University of Edinburgh, August 1992.

10. Organizer, Minisymposium on Nonlinear Optics and Hamiltonian Sys-
tems, Society for Industrial and Applied Mathematics conference on Ap-
plications of Dynamical Systems, Snowbird, Utah, October 1992.

11. “Mathematical aspects of soliton propagation in nonlinear optical fibers”,
Department of Mathematics, University of Michigan, January 1993.




